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Abstract We analyze and compare the errors of two numerical approaches for mea-
suring compensated income. We prove that Vartia’s algorithm and Breslaw and Smith’s
algorithm both converge quadratically; when the price change within each partition
step is small, the error of Vartia’s algorithm is approximately half that of Breslaw
and Smith’s algorithm. A theorem and the appropriate simulations with three differ-
ent demand systems correct the existing error analysis of the two algorithms, and
demonstrate that Vartia’s algorithm is more accurate than Breslaw and Smith’s.

Keywords Numerical method · Convergence rate · Compensating variation ·
Vartia’s algorithm · Breslaw and Smith’s algorithm

1 Introduction

Compensating variation (CV) and equivalent variation (EV) are frequently used as
measures of the effect of a change in state on a consumer’s welfare. Among the
numerical approaches used to estimate these measures, two algorithms are widely
discussed and applied: the Main Algorithm of Vartia (1983) (hereafter Vartia) and an
alternative proposed by Breslaw and Smith (1995) (hereafter B&S). These two algo-
rithms divide a price change into numerous small partition steps. The approximated
measures estimated with the algorithms converge to the true measures as the number
of partition steps increases.

An important feature of a numerical method is the convergence rate, as it determines
the accuracy and efficiency of the algorithm. On the general importance of proving the
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convergence rate of algorithms, Santos and Vigo-Aguiar (1998) point out that “... it is
important to have in hand error bounds or accuracy estimates of the computed solu-
tions. As is commonly realized (e.g., Judd 1992) there has been very little theoretical
work by economists on proving the accuracy of their numerical simulations.” To our
knowledge, no rigorous and complete proof of the convergence rate exists for Vartia’s
and B&S’s algorithms. Vartia claims in his Theorem 1 that his algorithm converges
cubically, but his proof has mistakes. The cubic convergence rate, however, is widely
accepted in literatures (e.g., Hayes and Porter-Hudak 1987b; Balk 1995; Hausman and
Newey 1995). B&S simulate Vartia’s algorithm and assert that it converges linearly,
but the code that they use contains errors. B&S also present their own algorithm and
show, by simulation, that it converges quadratically. They conclude that their algorithm
is more accurate and efficient than Vartia’s.

In this note, we present a graphical comparison of the two algorithms using a
one-step example in which Vartia’s algorithm is deemed more accurate. The exam-
ple motivates a more rigorous mathematical treatment. We prove a theorem that both
algorithms converge quadratically, and that the error of Vartia’s algorithm is approxi-
mately half that of B&S’s algorithm, when the price change within each partition step
is small. Simulations on one-good and multi-good demand systems verify the theorem
and support the conclusion that Vartia’s algorithm is more accurate.

2 Algorithm Background and Illustrative Analysis

We follow common definitions in demand theory. The function u(x) is the utility
function, where x is the consumption bundle. The function q(p, C) is the Marshal-
lian demand function, where p is price and C is income. The Marshallian demand
function is considered well-behaved; that is, for a complete demand system, the usual
integrability condition is satisfied, and for an incomplete demand system, the weak-
integrability condition (see LaFrance and Hanemann 1989) is satisfied. Furthermore,
the function q(p, C) is thrice continuously differentiable. The function v(p, C) is the
indirect utility function, and the function h(p, v) is the Hicksian demand function,
where v is the required utility level.

Suppose the price changes from p0 to p1. The compensated income C1 for the
consumer to maintain his initial utility level is defined implicitly by the equation

v
(

p1, C1
)

= v
(

p0, C0
)

. (1)

The CV is the difference between C0 and C1, and we calculate it by the equation

CV = −
p1∫

p0

h
(

p, u0
)

dp = −
p1∫

p0

q (p, C(p)) dp, (2)

where C(p) is the compensated income holding the consumer’s utility at the initial
level u0.
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To calculate the CV, we need the Hicksian demand function. In practice, we can
only retrieve information available from the Marshallian demand function. Hausman
(1981) derives the exact CV and EV for some Marshallian demand specifications with
a single price change. However, when the Marshallian demand functions are complex
and two or more prices change, Hausman (1981)’s method is difficult to implement
because it requires solving differential equations. This difficulty encourages research-
ers to approximate the integral of the Hicksian demand with information derivable
from the Marshallian demand. The methods that have been developed fall into two
main categories: one-step and numerical.

An early example of a one-step method is that developed by Malmquist (1993) in
the 1950s: he estimates the compensated income with a trapezoidal approximation.1

McKenzie and Pearce (1976) and Mas-Colell et al (1995) use a different idea from
Malmquist’s to estimate the CV: they expand the integral of the Hicksian demand
at the initial point to the second order with the Slutsky equation. Another attractive
method is proposed by Irvine and Sims (1998), who use the Slutsky compensated
demand through the initial point to approximate the Hicksian demand and estimate
the CV.

Although these one-step approximations are easy to implement, their errors can-
not be controlled. When the price change is large, the CV calculated from these
algorithms will be inaccurate. A related practical problem arises when the true
CV or EV is close to zero, in which case these one-step estimators may wrongly
suggest the sign of welfare change. Numerical approaches solve the accuracy prob-
lem with rather simple algorithms: first, divide the price change into n steps; sec-
ond, approximate the CV (i.e., the integral of the Hicksian demand) within each
small step; finally, aggregate over all the steps to obtain the total CV for the
whole price change. In the following two subsections we introduce the numerical
approaches proposed by Vartia and B&S, which are easy to implement and thus widely
used.

2.1 Vartia’s Algorithm

Suppose the initial income is C0 and the price changes from p0 to p1. Divide the price
change into n steps. Let pk = p0 + k

n (p1 − p0) be the ending price at step k, where
k = 1, · · · , n. Within each partition step from pk−1 to pk , Vartia’s algorithm first finds
a converging ending point q(pk, Ck) at the ending price pk ; second, it approximates
the integral of the Hicksian demand as the trapezoidal area between the two prices
formed by the initial point and the ending point.2 Therefore, the algorithm generates
a sequence C1, · · · , Cn so that

Ck − Ck−1 = 1

2

(
qk + qk−1

) · Δpk, (3)

1 Malmquist (1993) was written in the 1950s but published in 1993. The idea is reconstructed in Balk
(1995).
2 As Balk (1995) points out, the idea of Vartia’s approximation is similar to that in Malmquist (1993).
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where qk = q(pk, Ck), qk−1 = q(pk−1, Ck−1),Δpk = pk − pk−1, and the start-
ing values are (p0, q0, C0) = (p0, q(p0, C0), C0). The solution Ck is determined by
iteration from

Cm
k = Ck−1 + 1

2

(
q

(
pk, Cm−1

k

)
+ qk−1

)
· Δpk, (4)

where C0
k = Ck−1. When |Cm

k − Cm−1
k | is negligible, set Ck = Cm

k and calculate for
the next k. The estimator Cn converges to the compensated income C1 as the number
of partition steps n increases.

The algorithm is widely cited and well developed. The variance of the estimator
has been calculated by Porter-Hudak and Hayes (1986, 1991) and Hayes and Porter-
Hudak (1987a). An application and extension to the oil market can be found in Hayes
and Porter-Hudak (1987b).

2.2 Breslaw and Smith’s Algorithm

B&S use an idea similar to that in McKenzie and Pearce (1976) and Mas-Colell
et al (1995) and offer their own algorithm approximating the integral of the Hicksian
demand with second-order Taylor expansion and the Slutsky equation. Suppose the
initial income is C0 and the price changes from p0 to p1. Divide the price change into
n steps. Let pk = p0 + k

n (p1 − p0) be the ending price at step k, where k = 1, · · · , n.
The algorithm generates a sequence C1, · · · , Cn so that

Ck − Ck−1 = qk−1Δpk + 1
2

(
∂qk−1

∂p + ∂qk−1
∂C qk−1

) (
Δpk

)2
, (5)

where qk−1 = q(pk−1, Ck−1),Δpk = pk − pk−1, and the starting values are
(p0, q0, C0) = (p0, q(p0, C0), C0). The estimator Cn converges to the compensated
income C1 as the number of partition steps n increases.

Their algorithm draws much interest and discussion. Irvine and Sims (2002) discuss
applications of the algorithm, a recent application to the gasoline market can be found
in Shin and Burke (2010). Dumagan and Mount (1997) extend the algorithm by first
expanding the integral of the Hicksian demand at the initial point and the ending point
and then averaging the two expansions to get the approximated CV.

2.3 Relative Size of the Errors: A One-Step Example

We compare the errors and convergence rates of Vartia’s and B&S’s algorithms with
respect to n, the number of partition steps. Theoretically, given n, the algorithm with
smaller errors is more accurate. Indeed, the smaller error and higher rate of conver-
gence with respect to n are the main reasons B&S claim their algorithm dominates
Vartia’s in convergence performance.

To illustrate the two algorithms and our idea, we consider an example in which
u = x1x2, C0 = 1, p1 changes from 3.0 to 1.0, and p2 is fixed at 1.0. We calculate the
compensated income C1 by the two algorithms with only one partition step (n = 1).
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Fig. 1 Errors of the two algorithms: a one-step example

Figure 1 is the quantity-price span of the first good.3 Given a price change from
p0 = 3.0 to p1 = 1.0, the curve q(p, C(p)) is the Hicksian demand holding the
utility at the initial level. According to Eq. (2), the true CV is the area on the left of the
curve q(p, C(p)) between p0 = 3.0 and p1 = 1.0. We write Δp = p1 − p0 = −2.0.

After the iteration, the CV calculated by Vartia’s algorithm is the area on the left
of the line ab between p0 = 3.0 and p1 = 1.0, where the point b = (p1, q(p1, CV

1 ))

satisfies

CV
1 = C0 + 1

2

(
q

(
p1, CV

1

)
+ q

(
p0, C0

))
Δp, (6)

which is the converging version of Eq. (4). Therefore, the error of Vartia’s algorithm
is the area −A + C .

The CV calculated by B&S’s algorithm is the area on the left of the line ac
between p0 = 3.0 and p1 = 1.0. Line ac is tangent to q(p, C(p)) at the initial point
(p0, q(p0, C0)). This can be shown by Eq. (5): the first term is the rectangular area
on the left of ad between p0 = 3.0 and p1 = 1.0. Since (p0, q0) = (p0, q(p0, C0)),

the second term equals 1
2

dq(p0,C0)
dp (Δp)2, which is the area of the triangle formed by

a, c, and d. Therefore, the error of B&S’s algorithm is the area B + C .

3 All figures are developed with MATLAB, and are presented to scale.
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Figure 1 provides three important observations. First, the point b is close to the true
compensated point (p1, q(p1, C(p1))), so the area C is small. Therefore, the relative
size of the errors depends largely on the relative size of the areas A and B. Second,
B > A and thus |B + C | > | − A + C |, which means Vartia’s algorithm has a smaller
error. Third, the errors have opposite signs.

The above observations put in doubt B&S’s claim that their algorithm is more accu-
rate. Indeed, the example motivates us to look deeper into the relationship between
the errors of the two algorithms in more general cases.

3 A Theorem on the Convergence Rates and Relative Size of the Errors

Vartia’s Theorem 1 states that the total error over n steps converges cubically with
respect to n, the total number of partition steps; his Appendix A, however, only claims
that the error of his algorithm over k steps converges cubically with respect to n. As
we will show later, the total error over n steps and error over k steps are different, and
they converge at different rates with respect to n.

B&S present numerically that the error of Vartia’s algorithm vanishes linearly.
They also demonstrate numerically that their own algorithm converges quadratically,
much faster than Vartia’s does. However, B&S’s code of Vartia’s algorithm contains
errors.4 Largely based on this erroneous simulation, B&S suggest that their algorithm
dominates Vartia’s in convergence performance.

We find B&S’s reasoning on the convergence rate of Vartia’s algorithm to be flawed.
B&S argue that Vartia’s extended trapezoidal calculation in the innermost loops would
reduce the vanishing speed of errors (i.e. the convergence rate with respect to n). How-
ever, these innermost loops are iterations for the CV to converge within each step, and
the errors of the iterations can be controlled by the error tolerance of iterations. More
importantly, these errors are not related to n; that is, they do not affect the algorithm’s
convergence rate with respect to n.5

The approximated CV within each step of Vartia’s algorithm is very close to the
trapezoidal approximation of the integral of the Hicksian demand. Within each step,
the error of the trapezoidal approximation is to the third order; therefore, the total error
should be accumulated to the second order, not the first order or the third order. B&S’s
algorithm uses a second-order Taylor approximation, which also has third-order errors
in each step, so the total error should be accumulated to the second order in their algo-
rithm as well. Thus, the two algorithms have the same quadratic convergence rate with
respect to n.

Here we present a theorem that Vartia’s and B&S’s algorithms both converge qua-
dratically. To prove this theorem, we first provide the following lemmas constructing
the bounds of the errors of the two algorithms.

4 For B&S’s GAUSS code, see Table AII in B&S. In their code, the index j should have a starting value of
1 instead of 2. Moreover, the base demand update “xc = xt” (the eleventh lowest line) should be executed
only if the within-step interaction has converged; that is, this line should be placed after the line “check for
convergence”.
5 The errors of the iterations affect the computing time of Vartia’s algorithm given n. For discussions of
the computing time of the two algorithms, see Footnote 11.
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Lemma 1 Suppose the Marshallian demand q(p, C) is well-behaved and thrice con-
tinuously differentiable. For any finite price change from p0 to p1, divide the price
change into n steps. The error of Vartia’s algorithm over k steps (k < n) is bounded
by a term proportional to 1/n3. Mathematically,

|εV
k | ≤ N1

12

( |Δp|
n

)2
⎡
⎣

⎛
⎝

(
1 + K1|Δp|

2n

1 − K1|Δp|
2n

)k

− 1

⎞
⎠ 1

K1

⎤
⎦

∼

1

n3 , (7)

where Δp = p1 − p0, K1 and N1 are constants.

Lemma 2 Suppose the Marshallian demand q(p, C) is well-behaved and thrice con-
tinuously differentiable. For any finite price change from p0 to p1, divide the price
change into n steps. The error of B&S’s algorithm over k steps (k < n) is bounded by
a term proportional to 1/n3. Mathematically,

|εB&S
k | ≤ N1

6

( |Δp|
n

)2

⎡
⎢⎢⎢⎣

(
1 + K1

( |Δp|
n

)
+ 1

2 K2

( |Δp|
n

)2
)k

− 1

K1 + 1
2 K2(

|Δp|
n )

⎤
⎥⎥⎥⎦ ∼

1

n3 , (8)

where Δp = p1 − p0, K1, K2, and N1 are constants.

We prove Lemmas 1 and 2 in Appendices A.1 and A.2.
We proceed with the main theorem presenting the exact convergence rates and

relative size of the errors.

Theorem 1 Suppose the Marshallian demand q(p, C) is well-behaved and thrice
continuously differentiable. For any finite price change from p0 to p1, the calculated
compensated incomes from both algorithms converge to the true compensated income
quadratically. Mathematically,

εV
n = 1

12

(
dq

(
p1

)

dp
− dq

(
p0

)

dp

) (
Δp

n

)2

+ o

((
Δp

n

)2
)

∼

1

n2 , (9)

and

εB&S
n = −1

6

(
dq

(
p1

)

dp
− dq

(
p0

)

dp

) (
Δp

n

)2

+ o

((
Δp

n

)2
)

∼

1

n2 , (10)

where dq(p0)
dp = dq(p0,C(p0))

dp and dq(p1)
dp = dq(p1,C(p1))

dp . Therefore, if the price change

within each partition step is small, i.e., if Δp
n is small, then the error of Vartia’s algo-

rithm is approximately half that of B&S’s algorithm, and the errors have opposite
signs. Mathematically,
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εV
n = −1

2
εB&S

n + o

((
Δp

n

)2
)

. (11)

We prove Theorem 1 in Appendix A.3.

4 Simulations

4.1 Three Demand Systems

We use three calibrated demand systems, with one-good, two-good, and three-good
price changes, to compare the approximated CVs by the two algorithms. To make the
results comparable with those in B&S, we use the same demand systems that B&S
use.

The one-good demand system is the linear Marshallian demand system discussed
by Hausman (1981). The demand function and the indirect utility function are in the
following forms:

q(p, C) = αp + δC + γ, (12)

and

v(p, C) = e−δp
(

C + 1

δ

(
αp + α

δ
+ γ

))
. (13)

Hausman (1981) sets the income for the mean person at $720 per month, and the
initial price at $0.75. The demand parameters are set at α = −14.22, δ = 0.082, and
γ = 4.95. We analyze the welfare effect of a rise in price.

The second demand system is the two-good indirect addilog demand (IAD) system
discussed by McKenzie and Pearce (1976).6 The demand functions and the indirect
utility function are in the following forms:

qi (p, C) = βi p j

pi

C

β1 p2 + β2 p1
, i �= j, i, j = 1, 2, (14)

and

v(p, C) = C

(
β1

p1
+ β2

p2

)
. (15)

McKenzie and Pearce (1976) set the income at $220 and the initial prices at
(1.0, 2.0). The demand parameters are set at β1 = β2 = 1.

The third demand system is the three-good IAD system discussed by B&S. The
demand functions and the indirect utility function are given by the equations

6 For examples and discussion of the IAD model, see Houthakker (1960), Yoshihara (1969), and Parks
(1969).
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Table 1 CV estimates from different sources

Algorithm Source of results n = 4 n = 5 n = 8 n = 20

Vartia B&S’s simulation 0.02 0.01

Our replication of B&S’s code 0.0241 0.0207 0.0142 0.0060

Vartia’s calculation −0.0083 −0.0024

Our simulation −0.0083 −0.0054 −0.0024 −0.0007

B&S B&S’s simulation 0.01 0.00

Our simulation 0.0150 0.0095 0.0035 0.0002

The two-good IAD system: qi (p, C) = βi p j
pi

C
β1 p2+β2 p1

, i �= j , i, j = 1, 2 β1 = β2 = 1, p0 =
(1.0, 2.0), p1 = (1.1, 1.6923), C0 = 220
The true CV for the given price change is −0.0004

qi (p, C) = αiβi yβi p−βi −1
i∑3

i=1 αiβi yβi −1 p−βi
i

, i = 1, 2, 3, (16)

and

v(p, C) =
3∑

i=1

αi

(
y

pi

)βi

. (17)

We use the parameters, initial prices, and income provided by B&S, as α =
(1.5, 1.5, 1.2), β = (1.0, 0.8, 1.2), p0 = (5.0, 5.0, 4.0), and C0 = 1000.

4.2 Examination of Programming Routines

Vartia and B&S both use the two-good IAD system to illustrate their algorithms by
moving along the indifference surface from the initial prices (1.0, 2.0) to the final
prices (1.1, 1.6923). Vartia calculates the CV using the number of partition steps
n = 4 and n = 8; B&S calculate the CV using n = 5, n = 20, and n = 100. This
demand system and the parameters specification allow us to examine the simulation
programs used in B&S and our paper. We compare the CV obtained in Vartia’s and
B&S’s papers with the results of our replication of their codes and our own simula-
tion.7

Table 1 shows the simulation results from the different sources. When we use
B&S’s code for simulation of Vartia’s algorithm, our results are consistent with
that shown in B&S, but different from Vartia’s calculation.8 Our simulation of Var-
tia’s algorithm matches the result of Vartia’s calculation. We conclude that B&S

7 All replications and simulations are programmed and run in MATLAB. The error tolerance for iteration
in Vartia’s algorithm is set at 10−8. Our codes are available upon request.
8 For the results shown in B&S, see Table II in B&S. For the results in Vartia, see Tables II and III in Vartia.
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make mistakes in their simulation and that our program of Vartia’s algorithm is
valid.

Our simulation of B&S’s algorithm shows consistent results with those in B&S,
verifying our program of B&S’s algorithm.9

Given the specific demand system and price change, the true CV is −0.0004, very
close to zero; Vartia’s algorithm reports the right sign, while B&S’s algorithm does
not. This confirms that errors in numerical algorithms may lead to erroneous con-
clusions about whether a consumer will be better off or worse off after a change in
state.

Table 1 also shows that the approximated CV by Vartia’s algorithm is closer to the
true CV at the given numbers of partition steps. In the following subsections we will
show that in the three demand systems this is true when the number of partition steps
is large, and we will quantify and compare the convergence rates and error sizes of
the two algorithms.

4.3 Convergence Rates

For each of the three demand systems, we calculate the true value of CV given a
specific price change, and we record errors of the two algorithms at different num-
bers of partition steps for the specific price change. To numerically verify the qua-
dratic convergence rates of the two algorithms, we consider the relationship between
the step size (|Δp| /n) and the absolute error (|ε|) with the form considered by
B&S:

|ε| = K

( |Δp|
n

)b

, (18)

and hence,

ln
(|ε|) = a + b ln

( |Δp|
n

)
, (19)

where |Δp| is the Euclidean norm of the price change. We estimate a and b using the
OLS estimator. The estimate of b gives the order of the error term (i.e., the rate of
convergence); the estimate of a (hence K ) gives the constant proportionality of the
absolute error. The algorithm with a larger b and lower a (therefore, a smaller K ) is
more accurate. We run regressions for the number of partition steps n from 2 to 100
for the two algorithms in each of the three demand systems and compare the estimates
of a and b.10 The results are shown in Table 2.

The estimates of b for both algorithms in all demand systems are very close to
2 (with the difference within 0.01). This result indicates that both algorithms con-
verge quadratically with respect to n, confirming Theorem 1. Moreover, since Vartia’s

9 For the results shown in B&S, see Table II in B&S.
10 In the two-good and three-good cases, B&S use equal price changes for all goods. To increase the
generalizability of our results, we use different price changes for different goods.
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Table 2 Estimates of convergence performance of the two algorithms

Algorithm Parameters One good
Δp = 0.5

Two goods
Δp = (0.25, 0.75)

Three goods
Δp = (0.25, 0.75)

Vartia â −3.3509 −1.9963 −1.3186

(0.0000) (0.0006) (0.0003)

b̂ 2.0000 1.9988 1.9993

(0.0000) (0.0002) (0.0001)

R2 1.0000 1.0000 1.0000

B&S â −2.6681 −1.2519 −0.6187

(0.0006) (0.0024) (0.0002)

b̂ 1.9979 2.0101 2.0012

(0.0001) (0.0006) (0.0001)

R2 1.0000 1.0000 1.0000

The model: ln(|ε|) = a + b ln(
|Δp|

n )

All models are estimated with the OLS estimator. The number of observations is 99 in all models. Standard
errors of estimates are in parenthesis

algorithm has considerably lower â, it is likely to dominate B&S’s algorithm in con-
vergence performance.

4.4 Relative Size of the Errors

To investigate the relative size of the two algorithms’ errors, and to confirm the dom-
inance of Vartia’s algorithm, we plot εV /εB&S , the error ratio of the two algorithms,
with respect to n, the number of partition steps in Fig. 2.

The error ratios in the three demand systems all converge to −0.5 as n increases.
This result confirms Theorem 1, that when Δp/n is small, the error of Vartia’s algo-
rithm is approximately half that of B&S’s algorithm and the errors have opposite
signs.11

11 A concern with numerical methods is the computing time. We test the computing time with simulations

of the IAD system qi = C/
(

p2
i · ∑d

i=1 p−1
i

)
, where i is the index of the good and d is the number of

goods. We conduct simulations for d from 1 to 10. For each d, we generate a d-dimensional price change Δp
with Δpi generated (independently) as a random number in (−1, 1). Our simulations suggest that Vartia’s
algorithm gets faster compared to B&S’s algorithm as the numbers of goods (d) and partition steps (n)
increase. For example, at d = 6, Vartia’s algorithm is faster when n ≥ 100; at n = 50, Vartia’s algorithm is
faster when d ≥ 7; Vartia’s algorithm is always faster than B&S’s algorithm for d ≥ 8. The results are not
surprising. As the number of goods rises, the Slutsky matrix used in B&S’s algorithm becomes increasingly
complicated compared to the Marshallian demand function, which is the only functional form used in Var-
tia’s algorithm. As the number of partition steps increases, the step size (|Δp| /n) becomes smaller, so each
within-step iteration in Vartia’s algorithm takes shorter time to converge, while B&S’s algorithm does not
enjoy this advantage. Therefore, as the numbers of goods and partition steps increase, Vartia’s algorithm is
more likely to dominate B&S’s algorithm in computing time. The results are available upon request.
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(a)

(b)

(c)

Fig. 2 The error ratio with respect to the number of partition steps

5 Conclusion

Vartia’s and B&S’s algorithms are popular approaches for approximating compen-
sated income numerically. B&S propose that their algorithm is superior in accuracy
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and convergence performance. Motivated by a one-step example with graphical anal-
ysis, we prove the theorem that in well-behaved demand systems, both algorithms
converge quadratically, and when the price change within each partition step is small,
the error of Vartia’s algorithm is approximately half that of B&S’s algorithm. Simula-
tions with one-good and multi-good cases confirm our theorem. Therefore, we correct
the claims in both Vartia’s and B&S’s papers and conclude that Vartia’s algorithm is
more accurate than B&S’s algorithm.

Acknowledgements We thank Professor Brian Wright and Professor Juan Bobenrieth for their valuable
comments.

Appendix A: Proofs of the Lemmas and the Theorem

We denote the compensated income at price pk as C(pk); the compensated demand
at price pk is q(pk, C(pk)) ≡ q(pk), and, by Shephard’s Lemma, dC

dp = q(p) holds.
We denote the calculated compensated income at price pk as Ck ; the calculated com-
pensated demand at price pk is therefore q(pk, Ck) ≡ qk . For any finite price change
from p0 to p1, the Marshallian demand q(p, C) is thrice continuously differentiable,
so the Lipschitz condition is satisfied:

|q(p, C1) − q(p, C2)| ≤ K1|C1 − C2|, (20)

and the second-order derivative of q(p) is bounded:

∣∣∣∣
d2q(p)

dp2

∣∣∣∣ ≤ N1. (21)

We denote the error term over k steps as εk , i.e., εk = Ck − C(pk). Following the
idea presented in Collatz (1960), we consider the error increase at each step.

A.1 Lemma 1: The Bound of the Error of Vartia’s Algorithm

Vartia’s algorithm is based on Eq. (3):

Ck − Ck−1 = 1

2

(
qk + qk−1

)
Δpk, (22)

where k = 1, · · · , n, qk = q(pk, Ck), qk−1 = q(pk−1, Ck−1),Δpk = pk − pk−1 =
Δp/n, and the starting values are (p0, q0, C0) = (

p0, q(p0, C0), C0
)
. Therefore,

ε0 = C0 − C(p0) = 0, where C(p0) is the given initial income. Vartia proves the
convergence of the iteration within each step when the step size is small, so Eq. (3) is
well defined.12

12 For Vartia’s proof, see Appendix 2 in Vartia.
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The total error over k steps can be calculated as εk = Ck − C(pk). Denote the
increase in the error from step k − 1 to step k as Δεk = εk − εk−1. Therefore, we have

Δεk = εk − εk−1 = (
Ck − Ck−1

) − (
C

(
pk

) − C
(

pk−1
))

=1

2
(qk + qk−1) Δpk −

pk∫

pk−1

q(p)dp

=1

2

[(
qk −q

(
pk

))+(
qk−1−q

(
pk−1

))]
Δpk + 1

2

(
q
(

pk
) + q

(
pk−1

))
Δpk

−
pk∫

pk−1

q(p)dp.

(23)

By Eq. (20), we get

|qk − q(pk)| ≤ K1|Ck − C(pk)| = K1|εk |, (24)

and

|qk−1 − q(pk−1)| ≤ K1|Ck−1 − C(pk−1)| = K1|εk−1|. (25)

By the well-known Trapezoidal rule, we know

∣∣∣∣∣∣
1

2

(
q
(

pk
) + q

(
pk−1

))
Δpk −

pk∫

pk−1

q(p)dp

∣∣∣∣∣∣
≤ N1

∣∣(Δpk)
3
∣∣

12
= N1

12

( |Δp|
n

)3

, (26)

where N1 is the bound of the second-order derivative of q(p, C(p)).
Plug these bounds into Eq. (23), we get

|Δεk | = |εk − εk−1| ≤ K1 |Δp|
2n

(|εk | + |εk−1|
) + N1

12

( |Δp|
n

)3

. (27)

We know |εk | − |εk−1| ≤ |εk − εk−1|; therefore, for a large n the equation can be
rearranged as follows:

(
1 − K1 |Δp|

2n

)
|εk | ≤

(
1 + K1 |Δp|

2n

)
|εk−1| + N1

12

( |Δp|
n

)3

, (28)

and hence,

|εk | ≤ 1 + K1|Δp|
2n

1 − K1|Δp|
2n

|εk−1| +
N1
12 (

|Δp|
n )3

1 − K1|Δp|
2n

. (29)
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Here, ε0 = 0. With some basic algebra, we estimate the error of Vartia’s algorithm
over k steps as follows:

|εk | ≤ N1

12

( |Δp|
n

)2
⎡
⎣

⎛
⎝

(
1 + K1|Δp|

2n

1 − K1|Δp|
2n

)k

− 1

⎞
⎠ 1

K1

⎤
⎦

= N1

12

( |Δp|
n

)2
⎡
⎣1 + kK1

|Δp|
n + o

( |Δp|
n

)
− 1

K1

⎤
⎦

= k
N1

12

( |Δp|
n

)3

+ o

(( |Δp|
n

)3
)

∼

1

n3 ,

(30)

where k < n. Therefore, the error over k steps is bounded by a term proportional to
1/n3. ��

A.2 Lemma 2: The Bound of the Error of B&S’s Algorithm

B&S’s algorithm is based on Eq. (5)

Ck − Ck−1 =qk−1Δpk + 1

2

(
∂qk−1

∂p
+ ∂qk−1

∂C
qk−1

) (
Δpk

)2
, (31)

where k = 1, · · · , n, qk−1 = q(pk−1, Ck−1),Δpk = pk − pk−1 = Δp/n, and the
starting values are (p0, q0, C0) = (p0, q(p0, C0), C0).

Define a new function g(p, C) = ∂q(p,C)
∂p + ∂q(p,C)

∂C q(p, C). Therefore, we have

gk ≡ g
(

pk, Ck
) = ∂qk

∂p
+ ∂qk

∂C
qk, (32)

and

g(pk) ≡ g
(

pk, C(pk)
) = ∂q(pk)

∂p
+ ∂q(pk)

∂C
q(pk) = ∂q(pk)

∂p
+ ∂q(pk)

∂C

∂C(pk)

∂p

= dq(pk)

dp
.

(33)

Note that g(pk) = dq(pk)
dp , while g(pk, Ck) �= dqk

dp . As Ck is our calculated value
for the compensated income at price pk , the term dCk/dp is not defined and we do
not have the relation dCk/dp = q(pk, Ck).

By the thrice continuous differentiability of the function q(p, C), we know that
g(p, C) is twice continuously differentiable and has bounded partial derivative with
respect to C for any finite change from C0 to C1. Therefore, it satisfies the Lipschitz
condition:
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|g(p, C1) − g(p, C2)| ≤ K2|C1 − C2|. (34)

Using the same notations as in Lemma 1’s proof, together with Eqs. (32) and (33),
we can formulate the increase in the error as follows:

Δεk = εk − εk−1 = (
Ck − Ck−1

) − (
C

(
pk

) − C
(

pk−1
))

. (35)

Use Eqs. (5) and (32) on the first term, and expand the second term at pk−1:

Δεk =
[

qk−1Δpk + 1

2
gk−1

(
Δpk

)2
]

−
[

q(pk−1)
(
Δpk

) + 1

2

dq
(

pk−1
)

dp

(
Δpk

)2 + 1

6

d2q(p∗)
dp2

(
Δpk

)3

]

= (
qk−1−q

(
pk−1

))
Δpk + 1

2

(
gk−1−g

(
pk−1

))(
Δpk

)2 − 1

6

d2q(p∗)
dp2

(
Δpk

)3
,

(36)

where p∗ ∈ [
pk−1, pk

]
.

Keep in mind that g(pk) = dq(pk )
dp . Therefore, by Eqs. (20), (34), and (21) we can

get

|qk−1 − q(pk−1)| ≤ K1|Ck−1 − C(pk−1)| = K1|εk−1|,
|gk−1 − g(pk−1)| ≤ K2|Ck−1 − C(pk−1)| = K2|εk−1|, (37)

and

∣∣∣∣
1

6

d2q(p∗)
dp2 (Δpk)

3
∣∣∣∣ ≤ N1

6
|(Δpk)

3| = N1

6

( |Δp|
n

)3
. (38)

Therefore, using methods similar to the proof of Lemma 1, we get

|εk |−|εk−1| ≤ |εk −εk−1| ≤ K1|εk−1|
( |Δp|

n

)+ 1

2
K2|εk−1|

( |Δp|
n

)2+ N1

6

( |Δp|
n

)3
,

(39)

and hence,

|εk | ≤
[

1 + K1

( |Δp|
n

)
+ 1

2
K2

( |Δp|
n

)2
]

|εk−1| + N1

6

( |Δp|
n

)3

. (40)

We can solve for the estimate of the error over k steps as
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|εk | ≤ N1

6

( |Δp|
n

)2

⎡
⎢⎢⎢⎣

(
1 + K1

( |Δp|
n

)
+ 1

2 K2

( |Δp|
n

)2
)k

− 1

K1 + 1
2 K2

( |Δp|
n

)

⎤
⎥⎥⎥⎦

= N1

6

( |Δp|
n

)2
[

kK1 · K1

K 2
1

|Δp|
n

+ o

( |Δp|
n

)]

= k
N1

6

( |Δp|
n

)3

+ o

(( |Δp|
n

)3
)

∼

1

n3 ,

(41)

where k < n. Therefore, the error over k steps is bounded by a term proportional to
1/n3. ��

A.3 Theorem 1: The Convergence Rates and Relative Size of the Errors

Here, we prove that both algorithms converge quadratically and that the error of Var-
tia’s algorithm is approximately half that of B&S’s algorithm when the price change
within each partition step is small.

First consider Vartia’s algorithm. In Eq. (23),

ΔεV
k = 1

2

[(
qk − q

(
pk

)) + (
qk−1 − q

(
pk−1

))]
Δpk

+ 1

2

(
q
(

pk
) + q

(
pk−1

))
Δpk −

pk∫

pk−1

q(p)dp,

(42)

where qk = q(pk, Ck), q(pk) = q(pk, C(pk)), qk−1 = q(pk−1, Ck−1), q(pk−1) =
q(pk−1, C(pk−1)), q(p) = q(p, C(p)), and Δpk = pk − pk−1. Expand at C(pk) and
C(pk−1) respectively for terms in the first [·], expand at pk−1 for the remaining terms,
and combine the like terms:

ΔεV
k =1

2

[
∂q

(
pk

)

∂C
εk + o

(
εk

) + ∂q
(

pk−1
)

∂C
εk−1 + o

(
εk−1

)
]

Δpk

+ 1

2

[
2q

(
pk−1

) + dq
(

pk−1
)

dp
Δpk + 1

2

d2q
(

pk−1
)

dp2

(
Δpk

)2 + o
((

Δpk
)2

)]
Δpk

−
[

q
(

pk−1
)Δp

n
+ 1

2

dq
(

pk−1
)

dp

(
Δpk

)2+ 1

6

d2q
(

pk−1
)

dp2

(
Δpk

)3+o
(
(Δpk)

3)
]

=1

2

[
∂q

(
pk

)

∂C
εk + ∂q

(
pk−1

)

∂C
εk−1

]
Δpk + 1

12

d2q
(

pk−1
)

dp2

(
Δpk

)3 + o
((

Δpk
)3

)
.

(43)

Using the result of Lemma 1 that εk is bounded by a term proportional to 1/n3, we
get
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ΔεV
k = 1

12

d2q
(

pk−1
)

dp2

(
Δp

n

)3

+ o

((
Δp

n

)3
)

. (44)

Since εV
0 = 0, we have

εV
n =

n∑
k=1

(
ΔεV

k

)

=
n∑

k=1

[
1

12

d2q
(

pk−1
)

dp2

(
Δp

n

)3

+ o

((
Δp

n

)3
)]

= 1

12

(
Δp

n

)2 n∑
k=1

[
d2q

(
pk−1

)

dp2

Δp

n

]
+

n∑
k=1

o

((
Δp

n

)3
)

= 1

12

(
Δp

n

)2 n∑
k=1

[
d2q

(
pk−1

)

dp2

Δp

n

]
+ o

((
Δp

n

)2
)

= 1

12

(
Δp

n

)2 ∫ p1

p0

d2q(p)

dp2 dp + o

((
Δp

n

)2
)

= 1

12

(
Δp

n

)2 (
dq(p1)

dp
− dq(p0)

dp

)
+ o

((
Δp

n

)2
)

∼

1

n2 .

(45)

Therefore, the quadratic convergence rate of Vartia’s algorithm is proved.
Second consider B&S’s algorithm. In Eq. (36),

ΔεB&S
k = (

qk−1 − q
(

pk−1
))

Δpk + 1

2

(
gk−1 − g

(
pk−1

))(
Δpk

)2

− 1

6

d2q
(

pk−1
)

dp2

(
Δpk

)3 + o
((

Δpk
)3

)
,

(46)

where qk−1 =q(pk−1, Ck−1), q(pk−1) = q(pk−1, C(pk−1)), gk−1 = g(pk−1, Ck−1),
g(pk−1) = g(pk−1, C(pk−1)), and Δpk = pk − pk−1. Expanding at C(pk−1), we get

ΔεB&S
k =

[
∂q

(
pk−1

)

∂C
εk−1 + o

(
εk−1

)]
Δpk + 1

2

[
∂g

(
pk−1

)

∂C
εk−1 + o

(
εk−1

)]
(Δpk)

2

− 1

6

d2q
(

pk−1
)

dp2

(
Δpk

)3 + o
((

Δpk
)3

)
.

(47)

Similarly, using the result of Lemma 2 that εk is bounded by a term proportional to
1/n3, we get
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ΔεB&S
k = − 1

6

d2q
(

pk−1
)

dp2

(
Δp

n

)3

+ o

((Δp

n

)3
)

. (48)

Since εB&S
0 = 0, similarly we have

εB&S
n =

n∑
k=1

(
ΔεB&S

k

)

=
n∑

k=1

[
−1

6

d2q
(

pk−1
)

dp2

(
Δp

n

)3

+ o

((
Δp

n

)3
)]

= − 1

6

(
Δp

n

)2 ∫ p1

p0

d2q(p)

dp2 dp + o

((
Δp

n

)2
)

= − 1

6

(
Δp

n

)2
(

dq
(

p1
)

dp
− dq

(
p0

)

dp

)
+ o

((
Δp

n

)2
)

∼

1

n2 .

(49)

Therefore, the quadratic convergence rate of B&S’s algorithm is proved.

By the two last equalities in Eqs. (45) and (49), εV
n = − 1

2εB&S
n + o

(
(
Δp
n )2

)
.

Therefore, if Δp
n is small, the error of Vartia’s algorithm is approximately half that of

B&S’s algorithm, and they have opposite signs. ��
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